Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi.
نویسندگان
چکیده
Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37 masculineC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.
منابع مشابه
Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion
Upon host cell contact, the protozoan parasite Trypanosoma cruzi triggers cytosolic Ca(2+) transients that induce exocytosis of lysosomes, a process required for cell invasion. However, the exact mechanism by which lysosomal exocytosis mediates T. cruzi internalization remains unclear. We show that host cell entry by T. cruzi mimics a process of plasma membrane injury and repair that involves C...
متن کاملERM Proteins Play Distinct Roles in Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease. In mammalian hosts, T. cruzi alternates between trypomastigote and amastigote forms. Additionally, trypomastigotes can differentiate into amastigotes in the extracellular environment generating infective extracellular amastigotes (EAs). Ezrin-radixin-moesin (ERM) are key proteins linking plasma membrane to actin...
متن کاملMembrane Cholesterol Regulates Lysosome-Plasma Membrane Fusion Events and Modulates Trypanosoma cruzi Invasion of Host Cells
BACKGROUND Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Ly...
متن کاملTrypanosoma cruzi immune evasion mediated by host cell-derived microvesicles.
The innate immune system is the first mechanism of vertebrate defense against pathogen infection. In this study, we present evidence for a novel immune evasion mechanism of Trypanosoma cruzi, mediated by host cell plasma membrane-derived vesicles. We found that T. cruzi metacyclic trypomastigotes induced microvesicle release from blood cells early in infection. Upon their release, microvesicles...
متن کاملNovel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation.
Mammalian cell invasion by the protozoan parasite, Trypanosoma cruzi, is facilitated by the activation of host cell phosphatidylinositol 3 (PI 3)-kinases. We demonstrate that the well-characterized Ca2+-regulated lysosome-mediated parasite entry pathway is abolished by wortmannin pretreatment. In addition, we have characterized a novel route of T. cruzi invasion unexpectedly revealed in the cou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Memorias do Instituto Oswaldo Cruz
دوره 94 Suppl 1 شماره
صفحات -
تاریخ انتشار 1999